
Application Authentication
The goal of application authentication is to build two-way trust between a partner's extension application and the Symphony web client. This
presents a unique problem because of our security model. Trust has to be established not only between the Symphony client and the application,
but the application will need to trust the Symphony client as well. This will take more than a single token such as would be provided using OAuth,
since that can only be used to build trust in one direction. The authentication flow, therefore, uses two tokens T and T . These tokens area s
generated by the partner's backend server and the Symphony backend after those servers mutually authenticate each other using X.509
certificates which have been installed previously. A "circle of trust" is established by passing the tokens in "opposite directions" so that each
backend server receives matching tokens via two separate paths.

The diagram below shows the interaction between the four "actors" in the Application Authentication flow. Note that this flow starts after the user
has logged into the Symphony web client (establishing identity of the user and trust between the Symphony web client and the Symphony
backend). The flow begins after the user loads the partner application.

Step Action Notes

1 Partner
application
uses Client
Extension API
to get info
about pod

No parameters required. This action is initiated when the partner application is loaded for the first time

2 Pod
information
returned and
includes pod
application
authentication
URL

3 Partner
application
sends request
to its backend
to initiate
server-to-pod
authentication

Pod URL that was returned in step 2 is included in request. Note that since this is a request from the partner
application to the partner server and the implementation details are totally up to the partner.

4 Partner server
calls the
application
authentication
URL on the
Symphony
pod.

In order to call the application authentication endpoint, a TLS session using client authentication must be established.
An "application user" must have been previously created on the pod (using Admin Portal) and a client certificate must
have been uploaded for that user. If TLS session can be successfully negotiated, trust between partner server and the
Symphony pod is established. The partner server generates and passes a token, T , to the Symphony backed.a
Symphony generates a matching token, T , and stores the token pair. The tokens are simple strings. The tokens
received from the partner application is opaque to Symphony but may have meaning to the partner server. The partner
server should assume the same thing for the Symphony token.

5 Pod returns
matching
token, T .s

Partner server should store the token pair. They will be needed later.

6 Partner server
returns T baa
ck to partner
application.

T is beginning the counterclockwise journey around the circle of trust (see picture above).a

7 Partner
application
uses Client
Extension API
to validate Ta

T continues its journeya

8 Symphony
request that
the Pod
validates Ta

T has now completed the circle back to the service that created it (or at least knows it). If the token is part of a currenta
(tokens are short-lived) token pair, the matching T token is returned to the Symphony client.s

9 Pod returns
the T tokens
to the
Symphony
Client

This verifies for the Symphony Client that the partner application is valid (talking to a trusted partner server). The Ts to

ken is now beginning the clockwise journey back to the partner's backend server.

10 Symphony
client
requests user
JWT from pod

The JWT contains information identifying the current user and is signed using a Symphony certificate whose public
key is accessible via the internet. The exact contents of the JWT may vary between applications; some applications
only receive a user reference ID while others receive enough information to uniquely identify the user.

11 JWT returned
to Symphony
Client

The Symphony Client holds on to the JWT in case the parter application wants it later to positively identify the user.

12 The
Symphony
Client returns
the T tokens
to the partner
application

13 Partner client
passes the Ts
(and maybe
the T) tokena
back to
partner
server.

This request is between the partner application and the partner server. It's implementation details are up to the
partner. For instance, if the partner application and server maintain a sticky session, only the T token would need tos
be sent back since the server would already have the corresponding T token saved in the session. If the token paira
matches a known set of tokens, then the clockwise route of T is complete and partner backend knows that its clients
application is talking to a valid Symphony Client.

14 Partner server
tells partner
application
that the token
is valid

This confirms for the partner client that is it talking to a valid Symphony Client.

15 Partner client
uses Client
Extension API
to get user
JWT

The Symphony Client will not return the JWT if trust has not been established by executing at least steps 1 - 11.

16 User JWT
returned

The JWT is signed by the Symphony backend to ensure that it is not tampered with. The signature can be verified
using publicly available certificate on the Symphony pod. The JWT contains information that identifies the user (e.g.
userReferenceId, user ID, email address, first/last/display name, company, username, etc.)

17 Partner client
authenticates
the user to
the partner
backend.

Note that since this is a request from the partner application to the partner server and the implementation details are
totally up to the partner.

18 Partner server
gets public
signing
certificate
from
Symphony
pod

19 Public signing
cert returned

At this point the partner server can both verify that the JWT has not been tampered with and decode the JWT to get
the user's identity.

20 Partner server
acknowledges
successful
authentication

At this point the partner application trusts that the user is who they say they are

JavaScript Client Authentication API

The existing startup sequence as currently documented will be modified to incorporate this two way authentication.

SYMPHONY.application.hello()

This method has been modified to return the pod id of the current pod. It returns a promise that will be fulfilled with an object with these members:

theme deprecated
themeV2 is the theme information for the Web Client
pod is the current pod id. This can be used to lookup the correct back-end end point.

SYMPHONY.application.register(auth, servicesWanted, servicesSent)

Call this method to register the application with the Symphony web client. This method will call the backend to validate the passed application id
and token. The backend will return the application token.

auth is either the id of the application for insecure apps, or an object with these members:

appId: the unique identifier of the application

tokenA: the application token generated as part of the authentication steps

This method returns a promise that will be fulfilled with an object with these members:

appId: the provided application identifier
tokenS: the Symphony token generated as part of the authentication steps

If authentication fails, this method will reject the promise.

getJwt()

A new service is made available to get a JWT with information about the current user. The name of the service is ' '. Callextended-user-info
the method ' ' to get a promise that will be resolved with the JWT containing user information. This JWT has been signed with the pod'sgetJwt
private key, and can be verified using the pod's public key.

{
 "aud" : "<id of app>",
 "iss" : "Symphony Communication Services LLC.",
 "sub" : "<Symphony user ID>",
 "exp" : "<expiration date in millis>",
 "user" : {
 "id" : "<Symphony user ID>",
 "emailAddress" : "<email address>",
 "username" : "<Symphony username>",
 "firstName" : "<first name>",
 "lastName" : "<last name>",
 "displayName" : "<display name>",
 "title" : "<title>",
 "company" : "<company>",
 "companyId" : "<company (pod) ID>",
 "location" : "<location>",
 "avatarUrl" : "<URL for user's avatar>",
 "avatarSmallUrl" : "<URL for user's small avatar>"
 }
}

Backend API

Backend authentication

For the backend-to-backend application authentication, the application backend can invoke this REST-full API to the Symphony Backend using
the application certificate. The T is generated by the application and must be for each new application authentication request. Thea unique

Symphony backend will generated a unique corresponding T for this T pair. This T will live in the Symphony Backend for a TTL of ~ 5 mins fors a s
subsequence validateToken call in Step 7 of the Authentication Flow diagram above. If the T has expired, the application will need tos
re-authenticate with the Symphony backend , starting with Step 3 of the Authentication Flow diagram above.

JWT Payload Format

POST https://<host>:<port>/sessionauth/v1/authenticate/extensionApp
{
 "appToken": <Ta> // String
}

Response:
200 OK
{
 "appId": <appId>, // String
 "appToken": <Ta>, // String
 "symphonyToken": <Ts> // String
}

Pod Certificate

To validate the authenticity of the JWT token return in Step 16 of the Authentication flow diagram, the application can call this API to retrieve the
public certificate that the Symphony Backend used to sign the JWT token. This API does not required an application certificate to retrieve the pod
public certificate.

GET https://<host>:<port>/sessionauth/v1/app/pod/certificate

Response:
200 OK
{
 "certificate": <public certificate in PEM format> // String
}

	Application Authentication

